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The forces acting on a clean spherical bubble fixed on the axis of a turbulent pipe flow
are computed using large-eddy simulation for a bubble Reynolds number ReB = 500
(based on the bubble diameter and centreline velocity in the pipe) and a bulk Reynolds
number Re = 6000 (based on the pipe diameter and bulk velocity). The force is found
to be influenced by all the length and time scales down to the Kolmogorov microscales.
The results show that the lift force experiences much larger fluctuations than the drag
force, an effect which is shown to be specific to clean bubbles as compared with solid
spheres. Using the instantaneous undisturbed velocity and vorticity at the centre of the
bubble, the drag force is well predicted by Moore’s drag law while Auton’s expression
for the shear-induced lift force yields a good description of the transverse force.

1. Introduction
The mechanisms that control the motion of spherical particles moving in simple

laminar unbounded flows are currently fairly well understood; in particular, the
various forces acting on them (drag, history, added mass and shear-induced lift)
have been characterized and expressed in a wide range of flow regimes thanks to a
combination of analytical studies, experiments and numerical simulations. For a clean
spherical bubble moving at high Reynolds number (ReB = ρd‖V 0 − VB‖/µ > 50), the
force balance on the bubble is usually written in the form (Auton, Hunt & Prud’homme
1988; Magnaudet & Eames 2000):
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where d and VB are the bubble diameter and velocity, V and Ω are the instantaneous
undisturbed liquid velocity and vorticity (the index 0 denotes quantities evaluated at
the centre of the bubble), g is the body force, ρ is the liquid density, µ is the liquid
viscosity, CM is the added-mass coefficient (CM = 1/2 for a spherical body), CD is the
drag coefficient and CL is the shear-induced lift coefficient. In (1.1) the bubble inertia
is neglected compared to the liquid inertia and the so-called history force is neglected
compared to the quasi-steady drag (this hypothesis is correct as long as the relative
acceleration is not large compared to ‖V 0 − VB‖2/d). For moderate shear rates
(typically ‖Ω0‖d/‖V 0 − VB‖ < 0.4), the lift coefficient is close to Auton’s theoretical
prediction CL = 1/2 (Legendre & Magnaudet (1998) found CL = 0.5 − 6.5/ReB for
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ReB Re Re� D/d η/d λ/d Λ/d I

500 6000 400 15.6 0.12 1.35 3.1 0.064

Table 1. Reynolds numbers and characteristic length scales. ReB and Re are defined in the
text, Re� = Du�/ν is the friction Reynolds number based on the friction velocity u�, η is the
Kolomogorov scale, λ is the Taylor microscale, Λ is the integral scale and I = 〈u′2 + v′2 +

w′2〉1/2/
√

3〈Ua〉 is the relative turbulence intensity (all evaluated on the centreline).

ReB > 5) and the drag coefficient follows Moore’s prediction CD = (48/ReB)(1 −
2.211Re−1/2

B ) (Moore 1963) when ReB > 50. Note that in the low-Reynolds-number
regime, the drag evolution is significantly modified from this, and the structure of
the lift force differs from that in (1.1) since both strain and vorticity combine in a
nonlinear way to produce O(Re1/2

B ) lift forces. The above results are a priori valid
only when the particle size and the time scale d/‖V 0 − VB‖ are much smaller than the
length and time scales characterizing the variations of the surrounding flow. In such
situations, the velocity profile of the base flow can be considered linear over distances
of O(d) and the force balance (1.1) can be used safely. However in many practical
situations the flow is turbulent and bubbles interact with vortical structures whose
size is comparable with or smaller than d and whose time scale is much smaller than
d/‖V 0 − VB‖. The aim of this study is to evaluate the forces acting on a bubble whose
size is comparable with or larger than some eddy scales of the turbulent field. For this
purpose, we use the large-eddy simulation (LES) technique to analyse the interaction
between a clean spherical bubble and a turbulent pipe flow. The basic question
we consider is that of the modification of the force balance (1.1). An equivalent
study was recently performed using direct numerical simulation (DNS) by Bagchi &
Balachandar (2003) for a solid sphere embedded in a frozen isotropic turbulence.

2. Statement of the problem
We consider a spherical bubble of diameter d set fixed at x =0 on the axis ex of a

circular pipe of diameter D and length L. The Cartesian coordinate system attached
to the bubble is (x, y, z). The problem depends on two characteristic numbers: the
bubble Reynolds number ReB = ρ〈Ua〉d/µ, 〈Ua〉 being the time-averaged centreline
velocity of the flow, and the bulk Reynolds number Re. In what follows we shall
focus on results obtained for ReB = 500 and Re = 6000, selected so that the size of the
bubble is comparable with the Taylor microscale of the flow and is about ten times
the Kolmogorov microscale. The ratios between these turbulent scales and the bubble
diameter are listed in table 1. Note that, given the ratio d/D, the mean flow seen by
the bubble is almost uniform with a velocity 〈Ua〉 and ReB may be interpreted as the
average Reynolds number of the bubble. Note also that in most low-viscosity fluids, a
bubble corresponding to ReB =500 would be strongly deformed, as bubbles rising in
still water for instance can only be considered spherical for ReB < 250, approximately.
However, as mentioned in the introduction, the dynamics of a clean spherical bubble
are qualitatively almost independent of the Reynolds number for ReB > 50, so that
the conclusions of the present study are of direct use for gas bubbles rising in water
in the range 50 <ReB < 250.

The instantaneous force acting on the bubble will be compared with the force FLam

that would be experienced by the same bubble embedded in a laminar, uniform steady
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flow having velocity 〈Ua〉. According to the force balance (1.1),

FLam = 6πµd
(
1 − 2.211Re−1/2

B

)
〈Ua〉ex (2.1)

We assume the bubble to be clean (i.e. free of any surfactant or contaminant) and
the surface tension to be high enough for its shape to remain spherical. Under these
conditions, the normal velocity and tangential stress are zero at the bubble surface. In
addition we enforce a non-slip condition at the pipe wall while a periodic condition is
imposed at the inlet and outlet of the pipe. The flow in the pipe is driven by imposing
a pressure difference �P between the outlet and the inlet. The averaged momentum
balance in the pipe implies that �P is directly related to the average shear stress
ρu�2 at the pipe wall and to the average force 〈F 〉 acting on the bubble through
�P/L = −4ρu�2/D − 4〈F 〉/πD2L. Since L and D are both large compared to d , the
contribution of 〈F 〉 is negligibly small compared to that of the average wall shear
stress.

3. Numerical procedure
The computations reported below were carried out with the LES curvilinear version

of the JADIM code described in previous references from our group. Details concern-
ing the discretization of the three-dimensional unsteady Navier–Stokes equations in
a general system of orthogonal curvilinear coordinates may be found in Magnaudet,
Rivero & Fabre (1995) and Legendre & Magnaudet (1998). The LES procedure which
makes use of the dynamic mixed model proposed by Zang, Street & Koseff (1993) was
extensively described in Calmet & Magnaudet (1997). The discretization of the gov-
erning equations is performed on a staggered mesh and the equations are integrated
in space using a finite-volume method with second-order accuracy, all spatial deriva-
tives being approximated using second-order centred schemes. Time advancement is
achieved through a Runge–Kutta/Crank–Nicolson algorithm which is second-order
accurate in time, incompressibility being satisfied at the end of each time step
through a projection technique. The computations employ the grid system described in
Legendre & Magnaudet (1998). A plane grid is first generated by considering the
streamlines and the equipotentials of the unbounded flow around a circular cylinder.
This grid is then made three-dimensional by a rotation about the x-axis. At large
distance from the bubble, one of the families of the coordinate lines tends to be
parallel to the ex-axis while the other tends to be orthogonal to ex , ensuring a direct
matching with the pipe wall, inlet and outlet of the numerical domain.

The length of the computational domain is chosen in order that (i) two-points cor-
relations are negligibly small for separation distances of the order of half the pipe
length, (ii) the velocity defect in the bubble wake has significantly decreased so that
the re-entering wake due to the periodic condition does not induce any significant
change on the upstream flow seen by the bubble. Taking into account the foregoing
considerations, we select L =5D = 78d . Figure 1(a) shows that the above two require-
ments are well satisfied with this choice of L. The grid spacing must satisfy require-
ments coming from both the LES of the flow and the description of the boundary layer
and wake of the bubble. Following Calmet & Magnaudet (1997) the grid is distributed
so that 5 points lie within the viscous sublayer near the pipe wall. Consequently
we choose a grid spacing �y+ = 0.5 at the wall, corresponding to �y/D = 0.0014.
We also require that all scales are resolved in the vicinity of the bubble, which
according to Legendre & Magnaudet (1998) is achieved if at least three cells lie
within the bubble boundary layer. An estimate of the thickness of this boundary layer
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Figure 1. (a) Two-point correlations: —–, Ru′u′ and − − −, Rv′
r v

′
r

on the pipe axis versus
x/L. , Mean centreline velocity downstream of the bubble normalized by 〈Ua〉 versus x/L
(the origin is at the bubble centre). (b) Iso-contours of νT /ν. The first grey region around the
bubble corresponds to νT < 0.01ν.

is δ/d ∼ Re−1/2
B (Moore 1963). The first pressure node is thus located at 0.004 d from

the bubble surface. Following Legendre & Magnaudet (1998), the bubble surface is
discretized with 20 × 64 uniformly distributed cells. We also checked that the resulting
grid distribution in the vicinity of the bubble allows us to capture the smallest
turbulent scales expected in this region. Figure 1(b) shows the time-averaged field of
the dynamically computed subgrid-scale viscosity νT normalized by the fluid kinematic
viscosity ν. Clearly, in a large region surrounding the bubble, νT /ν is negligibly small.
Consequently, the force acting on the bubble can be directly calculated using the
resolved pressure and velocity gradients at the bubble surface. Note that νT is also
negligibly small near the pipe wall thanks to the dynamic procedure. The maximum
values of the subgrid-scale viscosity νT are found for 5 <r/d < 7 (0.3 <r/D < 0.45)
corresponding to the part of the domain where the LES procedure is active. Finally
the grid used in the computations reported below is made of 200 × 52 × 64 cells. A
constant spacing is used in the azimuthal direction; in the other two directions
we select a geometrical distribution of the nodes ensuring that the length ratio
between two successive cells is less than 1.15 and 1.2 in the streamwise and radial
directions, respectively. The CFL condition yields a time step about 6 × 10−4 times the
Kolmogorov time scale, suggesting that all temporal scales of the flow are adequately
resolved. We checked the quality of the LES in curvilinear coordinates by considering
the turbulent pipe flow at Re = 6000 without the bubble. The computations were
performed with 80 × 32 × 64 grid points (∼ 164 000 nodes) uniformly spaced in the
streamwise and azimuthal directions, the radial distribution being that mentioned
above. The results were compared with experiments and numerical simulations repor-
ted by Eggels et al. (1994). The results of our LES were found to be in good agreement
with both the DNS and the experiments for all first- and second-order statistics. An
example of this is shown in figure 2. Note that the number of grid points used here
is twenty times smaller than that of the reference DNS.

4. Hydrodynamic forces
We now consider the spherical bubble fixed on the axis of the turbulent pipe flow

described before. Figure 3 shows a record of the three Cartesian components of the
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Figure 2. (a) Mean velocity profiles U+(y+) in the wall region. �, �, �, experimental
data; − − −, DNS; , this study. (b) Resolvable turbulent intensities across the pipe:
u+ (streamwise) and v+

r (radial) components. �, �, �, experiments; − − −, DNS; —–, this
study. DNS and experimental data are from Eggels et al. (1994).
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Figure 3. Cartesian components of the instantaneous force experienced by the bubble (time
is normalized by d/2〈Uaxe〉). , Fx/FLam; —–, Fy/FLam; ·····, Fz/FLam.

Fx/FLam Fy/FLam Fz/FLam 〈f ′2
x 〉1/2/FLam 〈f ′2

y 〉1/2/FLam ∼ 〈f ′2
z 〉1/2/FLam

∼ 1.005 ∼ 0.008 ∼ 0.007 0.043 0.27

Table 2. Mean values and r.m.s. fluctuations of the components of the force.

instantaneous force experienced by the bubble. The force is normalized by FLam, the
magnitude of the force given by (2.1), whereas time is normalized by the time scale
d/2〈Ua〉. The mean values of the force and the r.m.s. intensities of the turbulent
fluctuations are reported in table 2. Obviously, the dominant force is that acting in
the axial direction; its value is found to be close to the drag that the bubble would
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Figure 4. Validation of Taylor’s hypothesis. ——, V 0/〈Ua〉 and − − −, V 	/〈Ua〉 plotted
versus 2t〈Ua〉/d . (a) x-component, (b) y-component.

experience in the uniform steady flow corresponding to the mean centreline velocity
〈Ua〉. Figure 3 clearly shows that the fluctuations observed in the axial direction are
much smaller than those in the y- and z-directions, although the time-averaged value
of the force is zero in these directions (the average values of Fy and Fz reported in
table 2 are not strictly zero due to the finite time over which the average is performed).
Moreover, the crosswise fluctuations can instantaneously reach values of the same
order as the axial force (see e.g. t = 110, 350, 530, 600, 800d/2〈Ua〉 on figure 3) or can
be even larger (see e.g. t = 200, 450d/2〈Ua〉). This is confirmed by the values reported
in table 2 where the r.m.s. intensity of the force fluctuations in the radial direction is
found to be six times larger than the axial r.m.s. intensity and represents about 30 %
of the mean axial force. This result strongly differs from that obtained in the DNS
of Bagchi & Balachandar (2003) who, in the case of a solid sphere embedded in a
frozen isotropic turbulence, observed the magnitude of the fluctuations to be similar
in the streamwise and crosswise directions. To clarify the origin of this difference, we
also performed some computational runs with a rigid sphere instead of a bubble, the
particle Reynolds number and size being kept unchanged. In line with the previous
authors we obtained much smaller values of the crosswise r.m.s. fluctuations than
those reported in table 2 (〈f ′2

y 〉1/2/Fx ∼ 〈f ′2
z 〉1/2/Fx ∼ 0.07 instead of 0.27). Hence it

appears that the difference in the value of the crosswise r.m.s. fluctuations of the
force is due to the different boundary condition imposed on the sphere and not to a
difference in the background turbulence for instance.

Since the instantaneous fluid velocity on the centreline is generally not parallel
to the pipe axis, one might suspect that the radial fluctuations simply result from
the instantaneous drag. To analyse this possibility, the force may be split into its
component parallel to the instantaneous direction of the flow and its transverse
component orthogonal to it. Following the classical expression of the forces (1.1), we
consider the instantaneous velocity V in the absence of the bubble and evaluate it
at the centre of the bubble. Since the flow is turbulent, we have no exact expression
for V 0. To overcome this problem, we use the well-known Taylor hypothesis and
identify V 0 with V 	 = V (x = −	, t − 	/〈Ua〉). We chose 	 ∼ 2.5 d , a distance at which
the bubble-induced disturbance is small since this disturbance is almost irrotational
ahead of the bubble. We checked the Taylor hypothesis in the absence of the bubble
where V 0 can be directly evaluated and compared to V 	. The axial and y-components
of V 0 and V 	 are compared in figure 4 (the z-component yields similar results). The
very good collapse of V 0 and V 	 confirms that the Taylor hypothesis can be applied
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Figure 5. , Pressure and , viscous contributions to the force component , normalized
with FLam: (a) drag force and (b) modulus of the lift force.
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Figure 6. Instantaneous drag and lift force. (a) Drag: , numerical simulations; —–,
Moore’s drag law (first term of the right-hand side of (1.1)). (b) y-component of the lift
force: , Numerical simulations; —–, Auton’s prediction (fourth term of the right-hand side
of (1.1)).

in the present flow configuration, which is not unlikely since 〈u′2
x 〉1/2/〈Ua〉 is only

about 5 %. A similar agreement was observed for vorticity and velocity gradients.
We can now split the instantaneous force into a contribution along the instantaneous

flow direction (hereinafter called the drag contribution) and one orthogonal to V 0

(hereinafter called the lift contribution). The corresponding pressure and viscous stress
contributions are reported in figures 5(a) and 5(b) for the drag and lift components,
respectively. Both pressure and viscous stress contribute to the drag fluctuations (the
latter being about 1.5 times larger than the former as found for high-Re bubbles in
a laminar flow, see Magnaudet et al. 1995) while the lift is only due to the pressure
contribution. This behaviour suggests a different origin for the drag and lift com-
ponents, as in the case of a bubble in a laminar shear flow (see Legendre & Magnaudet
1998). We suspect that the drag fluctuations originate in the viscous dissipation
induced by the turbulence fluctuations while the lift is controlled by an inertial
mechanism.

The drag and lift components are plotted again in figure 6 and are compared with
the instantaneous forces involved in (1.1) (with VB = 0). The drag contribution
(figure 6a) is fairly well predicted by Moore’s expression FD = 6πµd(1 − 2.211/

ReB(t)1/2)V 0 where ReB(t) = ρ‖V 0‖d/µ is the instantaneous bubble Reynolds number.
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Figure 7. (a) Instantaneous x-component of the drag force: , Numerical simulations;
− − −, Moore’s drag law (first term of the rhs of 1.1), — Moore’s drag law plus added-mass
force (first and third terms of the right-hand side of 1.1). (b) Spectra of the Cartesian velocity
(black lines) and force components (grey lines) normalized by their r.m.s. values: , x; , y.

The lift or transverse force is also well predicted using Auton’s expression FL =
CLρ 1

6
πd3V 0 × Ω0 with CL = 1/2. In particular, this expression is found to predict the

sudden increase of the lift force at time t = 200d/2〈Ua〉 displayed in figure 6(b). The
inertia force induced by the fluid (third term on the right-hand side of (1.1)) also
generates contributions to both the drag and the lift component. However, the corres-
ponding effect is small compared to Moore’s and Auton’s forces because the magnitude
of the inertia force may be estimated as Fi ∼ (1 + CM )ρ 1

6
πd3[∂u′

i/∂t + 〈Ua〉∂u′
i/∂x +

O(u′
j ∂u′

i/∂xj )]. Using again Taylor hypothesis, one has ∂u′
i/∂t ∼ −〈Ua〉∂u′

i/∂x from
which Fi ∼ O(∂u′

ju
′
i/∂xj ) follows.

Neglecting this contribution we conclude that the dominant force on a high-
Reynolds-number spherical bubble fixed in a weakly turbulent flow (I 	 1, see table 1)
where turbulence is locally close to homogeneity and isotropy can be approximated
as

F(t) ∼ 6πµd

(
1 − 2.211

ReB(t)1/2

)
V 0 + CLρ

πd3

6
V 0 × Ω0. (4.1)

On figure 6(a), the main differences between the numerical values of the force and
the prediction (4.1) occur at high frequency. We explored the possibility that the
inertia force neglected in (4.1) is responsible for most of this discrepancy by adding
the third term on the right-hand side of (1.1) to (4.1). The corresponding prediction
is reported on figure 7. We observe that the high frequencies are better reproduced.
The prediction of the magnitude of the force is also improved.

The agreement between the simple expression (4.1) and the computational results
is quite remarkable, keeping in mind that the Moore and Auton expressions were
formally derived in flows where the time and length scales are much larger than d/〈Ua〉
and d , respectively, whereas the diameter of the bubble considered here is comparable
with the Taylor microscale. Indeed the spectra of the time-dependent forces (figure 7b)
indicate that all flow frequencies are seen by the bubble and contribute to both the
drag and the lift force, which confirms that (4.1) (and hence (1.1)) is valid beyond the
assumptions under which it was originally established. The agreement of numerical
predictions with (4.1) is mostly due to the fact that V 0 is dominated by the streamwise
component 〈Ua〉ex , i.e. advection is dominated by the mean relative velocity, which
implies that at leading order the force fluctuations in all three directions depend
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linearly on the velocity or vorticity fluctuations. This suggests that Tchen’s dispersion
theory which is in principle restricted to small particles (ReB 	 1, d/η 	 1) can be
extended to larger bubbles with higher Reynolds numbers. Spelt & Biesheuvel (1997)
have used this idea for gas bubbles in isotropic turbulence and found it to be consistent
with the experimental results of Poorte & Biesheuvel (2002) who studied the motion
of d = 1 mm gas bubbles in grid turbulence.

The results presented above show that for ReB = O(102), the dynamics of a
spherical bubble are correctly predicted by considering the undisturbed liquid velocity
and vorticity evaluated at the centre of the bubble. We compared this point-wise
description with that based on a local volume average of the flow properties (V 0, Ω0)
over volumes of diameter Φ ranging from d/2 to 3d . Such an approach is suggested
by the fact that part of the inertia force (that corresponding to the 1 in the 1 + CM

term) arises from the volume integral of the fluid acceleration over the bubble volume.
Using the averaged flow properties, we computed the drag and lift forces in (4.1) and
compared them with the LES results. It turned out that only the mean drag force was
accurately predicted whatever Φ , whereas the fluctuations of the force components
and their r.m.s. values were severely underpredicted for all Φ 
= 0, the difference
between the actual force and the prediction being an increasing function of Φ . For
instance, we observed that only about 70 % (resp. 60 %) of the r.m.s. drag (resp. lift)
force is captured when Φ = d is selected, which indicates that about one third of the
r.m.s. force fluctuations is due to velocity and/or vorticity fluctuations associated with
motions of size smaller than d .

Using previous results, we may also estimate the magnitude of the fluctuations of
the forces reported in table 2. First, the instantaneous drag force can be estimated
in the form F ∼ 6πµd[1 − 2.211/Re1/2

B + O(I/Re1/2
B )]V 0 where ReB is now the time-

averaged Reynolds number of the bubble and I is the relative intensity of the
turbulence defined in table 1. Coming back to Cartesian coordinates and using the
splitting V 0 = (〈Ua〉 + u′)ex + v′ey + w′ez, it follows that the mean value of the force
in the axial direction is FLam whereas the relative r.m.s. value in the same direction is
〈f ′2

x 〉1/2/FLam ∼ 〈u′2〉1/2/〈Ua〉. According to figure 2(b), u+ ∼ 1 on the centreline of the
pipe and from table 1 〈Ua〉/u� ∼ 20. The r.m.s. intensity of the axial force can thus
be estimated as 〈f ′2

x 〉1/2/FLam ∼ 0.05 which is in good agreement with the numerical
results (see table 2). In the same way the radial r.m.s. intensity resulting from the
viscous drag can be estimated as 〈f ′2

r 〉1/2/FLam ∼ 〈v′2
r 〉1/2/〈Ua〉. Setting v+

r ∼ 0.6 (see
figure 2b), the radial r.m.s. contribution of the drag is then 〈f ′2

r 〉1/2/FLam ∼ 0.03 which
is one order of magnitude less than the numerical value reported in table 2. This result
indicates that the viscous drag contribution to the r.m.s. intensity of the radial force
is negligibly small. The radial r.m.s. fluctuations are thus mainly due to the Auton lift
force and can be estimated using (4.1). In the y-direction, one finds that the dominant
contribution is 〈f ′2

y 〉1/2 ∼ CLρπd3〈Ua〉〈ω′2
z 〉1/2/6 where ω′

z is the vorticity fluctuation in
the z-direction. As the r.m.s. intensity of the normalized vorticity on the centreline of
the pipe is 〈ω′2

z 〉1/2/(u�2/ν) ∼ 0.038, we deduce that 〈f ′2
y 〉1/2 is about 1/3 of the mean

drag force in agreement with the result reported in table 2. As a consequence, we
conclude that the maximum instantaneous values of the transverse force are induced
by the spikes of vorticity whose magnitude is typically 3 times 〈ω′2

z 〉1/2. As pointed
out earlier, much smaller values of the crosswise fluctuations of the force are obtained
with a rigid sphere (see Bagchi & Balachandar 2003), showing that the lift force on a
rigid particle results from a viscous mechanism (even for ReB � 1 where it is driven
by the asymmetry of the near wake), whereas the lift force on a shear-free spherical
bubble is produced by a purely inertial mechanism.



62 A. Merle, D. Legendre and J. Magnaudet

5. Conclusion
The forces experienced by a clean spherical bubble fixed on the axis of a turbulent

pipe flow have been computed using LES for bubble Reynolds number ReB = 500 and
bulk Reynolds number Re = 6000. The results show that these forces are affected by all
the time and length scales of the turbulent field down to the Kolmogorov microscales.
The values of the instantaneous force reveal that the drag component is fairly well
predicted by Moore’s drag law while Auton’s lift force yields an accurate prediction
of the transverse force, even though the diameter of the bubble is comparable
with the Taylor microscale. The crosswise r.m.s. fluctuations of the force are much
larger than their streamwise counterpart, an effect which is specific to clean bubbles
compared with rigid particles, since the mechanism responsible for the lift force differs
between these two types of particles. The results obtained here are not specific to a
bubble set fixed on the axis of a pipe. They may for instance be applied to isolated
bubbles moving in any weakly turbulent flow (I 	 1) in which turbulence is almost
homogeneous and isotropic over distances of several bubble diameters. Hence (1.1)
can be considered a sound basis for the point-force tracking of high-ReB (ReB > 50)
spherical bubbles, provided the relative turbulence intensity is weak (situations of
strong turbulence and weak mean flow where I = O(1) certainly obey different laws).
In contrast, note that no conclusion concerning the modelling of the back reaction
of the bubbles on the flow can be drawn from our study. Moreover, small bubbles
with ReB = O(1) moving in a turbulent flow will obey different dynamics since the
mechanisms responsible for the low-Re lift force differ from those taken into account
in (1.1).
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